Identification of the yeast gene encoding the tRNA m1G methyltransferase responsible for modification at position 9.

نویسندگان

  • Jane E Jackman
  • Rebecca K Montange
  • Harmit S Malik
  • Eric M Phizicky
چکیده

Methylation of tRNA at the N-1 position of guanosine to form m(1)G occurs widely in nature. It occurs at position 37 in tRNAs from all three kingdoms, and the methyltransferase that catalyzes this reaction is known from previous work of others to be critically important for cell growth in Escherichia coli and the yeast Saccharomyces cerevisiae. m(1)G is also widely found at position 9 in eukaryotic tRNAs, but the corresponding methyltransferase was unknown. We have used a biochemical genomics approach with a collection of purified yeast GST-ORF fusion proteins to show that m(1)G(9) formation of yeast tRNA(Gly) is associated with ORF YOL093w, named TRM10. Extracts lacking Trm10p have undetectable levels of m(1)G(9) methyltransferase activity but retain normal m(1)G(37) methyltransferase activity. Yeast Trm10p purified from E. coli quantitatively modifies the G(9) position of tRNA(Gly) in an S-adenosylmethionine-dependent fashion. Trm10p is responsible in vivo for most if not all m(1)G(9) modification of tRNAs, based on two results: tRNA(Gly) purified from a trm10-Delta/trm10-Delta strain is lacking detectable m(1)G; and a primer extension block occurring at m(1)G(9) is removed in trm10-Delta/trm10-Delta-derived tRNAs for all 9 m(1)G(9)-containing species that were testable by this method. There is no obvious growth defect of trm10-Delta/trm10-Delta strains. Trm10p bears no detectable resemblance to the yeast m(1)G(37) methyltransferase, Trm5p, or its orthologs. Trm10p homologs are found widely in eukaryotes and many archaea, with multiple homologs in several metazoans, including at least three in humans.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of human tRNA:m5C methyltransferase catalysing intron-dependent m5C formation in the first position of the anticodon of the pre-tRNA(CAA)Leu

We identified a human orthologue of tRNA:m5C methyltransferase from Saccharomyces cerevisiae, which has been previously shown to catalyse the specific modification of C34 in the intron-containing yeast pre-tRNA Leu (CAA). Using transcripts of intron-less and intron-containing human pre-tRNA Leu (CAA) genes as substrates, we have shown that m5C34 is introduced only in the intron-containing tRNA ...

متن کامل

Examining the Gm18 and m1G Modification Positions in tRNA Sequences

The tRNA structure contains conserved modifications that are responsible for its stability and are involved in the initiation and accuracy of the translation process. tRNA modification enzymes are prevalent in bacteria, archaea, and eukaryotes. tRNA Gm18 methyltransferase (TrmH) and tRNA m(1)G37 methyltransferase (TrmD) are prevalent and essential enzymes in bacterial populations. TrmH involves...

متن کامل

1-Methylguanosine deficiency of tRNA influences cognate codon interaction and metabolism in Salmonella typhimurium.

1-Methylguanosine (m1G) is present next to the 3' end of the anticodon (position 37) in tRNA(1,2,3,Leu), tRNA(1,2,3,Pro), and tRNA(3Arg). A mutant of Salmonella typhimurium lacks m1G in these seven tRNAs when grown at or above 37 degrees C, as a result of a mutation (trmD3) in the structural gene (trmD) for the tRNA(m1G37)methyltransferase. The m1G deficiency induced 24 and 26% reductions in th...

متن کامل

Human AlkB homolog ABH8 Is a tRNA methyltransferase required for wobble uridine modification and DNA damage survival.

tRNA nucleosides are extensively modified to ensure their proper function in translation. However, many of the enzymes responsible for tRNA modifications in mammals await identification. Here, we show that human AlkB homolog 8 (ABH8) catalyzes tRNA methylation to generate 5-methylcarboxymethyl uridine (mcm(5)U) at the wobble position of certain tRNAs, a critical anticodon loop modification link...

متن کامل

Detection and discovery of RNA modifications using microarrays

Using a microarray that tiles all known yeast non-coding RNAs, we compared RNA from wild-type cells with RNA from mutants encoding known and putative RNA modifying enzymes. We show that at least five types of RNA modification (dihydrouridine, m1G, m2(2)G, m1A and m6(2)A) catalyzed by 10 different enzymes (Trm1p, Trm5, Trm10p, Dus1p-Dus4p, Dim1p, Gcd10p and Gcd14p) can be detected by virtue of d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • RNA

دوره 9 5  شماره 

صفحات  -

تاریخ انتشار 2003